Influence of β -Substituents in Aldol Reactions of Boron Enolates of β -Alkoxy Methylketones

Luiz C. Dias,* Emílio C. de Lucca, Jr., Marco A. B. Ferreira, Danilo C. Garcia, and Cláudio F. Tormena

Instituto de Química, Universidade Estadual de Campinas, UNICAMP, C.P. 6154, 13084-971, Campinas, SP, Brazil

ldias@iqm.unicamp.br

Received September 24, 2010

Moderate to good levels of substrate-based 1,5-*syn*-stereocontrol could be achieved in the boron-mediated aldol reactions of β -tert-butyl methylketones with achiral aldehydes, independent of the nature of the β -alkoxy protecting group (P = PMB or TBS). The analysis of the relative energies of the transition structures by theoretical calculations using the density functional B3LYP shows relative energies favoring the corresponding OUT-1,5-*SYN* transition structures, explaining the observed 1,5-*syn* stereoinduction.

The first evidence for 1,5-*anti* asymmetric induction in aldol reactions of boron enolates generated from β -alkoxy methylketones was described in 1989 by Masamune and co-workers in their approach to the synthesis of the AB fragment [C1–C16] of bryostatin 1.¹

Since then, numerous approaches from the research groups of Paterson,² Evans,³ Denmark,⁴ Dias,⁵ and others⁶ have shown that the sense of induction in aldol reactions of boron

10.1021/ol102303p © 2010 American Chemical Society Published on Web 10/08/2010 enolates of β -alkoxy methylketones with aldehydes favors the formation of the 1,5-*anti* diastereoisomer. However, we demonstrated that it is possible to obtain good levels of 1,5*syn* induction from β -trifluoromethyl and β -trichloromethyl- β -alkoxy methylketones independent of the nature of the β -alkoxy protecting group (Scheme 1).^{5c,d}

⁽¹⁾ Blanchette, M. A.; Malamas, M. S.; Nantz, M. H.; Roberts, J. C.; Somfai, P.; Whritenour, D. C.; Masamune, S.; Kageyama, M.; Tamura, T. J. Org. Chem. **1989**, *54*, 2817.

^{(2) (}a) Paterson, I.; Oballa, R. M.; Norcross, R. D. *Tetrahedron Lett.* **1996**, *37*, 8581. (b) Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett.* **1996**, *37*, 8585. (c) Paterson, I.; Collet, L. A. *Tetrahedron Lett.* **2001**, *42*, 1187. (d) Paterson, I.; Di Francesco, M. E.; Kuhn, T. Org. Lett. **2003**, *5*, 599.

^{(3) (}a) Evans, D. A.; Gage, J. R. *Tetrahedron Lett.* **1990**, *31*, 6129. (b) Evans, D. A.; Coleman, P. J.; Côté, B. *J. Org. Chem.* **1997**, *62*, 788. (c) Evans, D. A.; Côté, B.; Coleman, P. J.; Connell, B. T. *J. Am. Chem. Soc.* **2003**, *125*, 10893. (d) Evans, D. A.; Connell, B. T. *J. Am. Chem. Soc.* **2003**, *125*, 10899. (e) Evans, D. A.; Nagorny, P.; McRae, K. J.; Sonntag, L.-S.; Reynolds, D. J.; Vounatsos, F. *Angew. Chem., Int. Ed.* **2007**, *46*, 545. (f) Evans, D. A.; Welch, D. E.; Speed, A. W. H.; Moniz, G. A.; Reichelt, A.; Ho, S. J. Am. Chem. Soc. **2009**, *131*, 3840.

^{(4) (}a) Denmark, S. E.; Fujimori, S.; Pham, S. M. J. Org. Chem. 2005, 70, 10823. (b) Denmark, S. E.; Fujimori, S. Synlett 2001, 1024. (c) Denmark, S. E.; Fujimori, S. J. Am. Chem. Soc. 2005, 127, 8971.

^{(5) (}a) Dias, L. C.; Sousa, M. A.; Zukerman-Schpector, J.; Bau, R. Z. Org. Lett. 2002, 4, 4325. (b) Dias, L. C.; Aguilar, A. M. Org. Lett. 2006, 8, 4629. (c) Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M. Org. Lett. 2007, 9, 4869. (d) Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M. J. Org. Chem. 2008, 73, 6299. (e) Dias, L. C.; Pinheiro, S. M.; Oliveira, V. M.; Ferreira, M. A. B.; Tormena, C. F.; Aguilar, A. M.; Zukerman-Schpector, J.; Tiekink, E. R. Tetrahedron 2009, 65, 8714. (f) Dias, L. C.; Aguilar, A. M. Chem. Soc. Rev. 2008, 37, 451. (g) Dias, L. C.; Aguilar, A. M. Quim. Nova 2007.

^{(6) (}a) Arefolov, A.; Panek, J. S. Org. Lett. **2002**, *4*, 2397. (b) Park, P. K.; O'Malley, S. J.; Schmidt, D. R.; Leighton, J. L. J. Am. Chem. Soc. **2006**, *128*, 2796. (c) Li, P.; Li, J.; Arikan, F.; Ahlbrecht, W.; Dieckmann, M.; Menche, D. J. Am. Chem. Soc. **2009**, *131*, 11678. (d) Li, P.; Li, J.; Arikan, F.; Ahlbrecht, W.; Dieckmann, M.; Menche, D. J. Org. Chem. **2010**, *75*, 2429.

p-minorometry and p -memorometry- p -Arkoxy Methylketones							
R PO C	0B(c-Hex)₂ │	R'CHO -78 °C R	0 1,5-sy	OH R'	+ PO R	0 1,5-anti	OH ∕_R'
$R = CF_3$	1, P = Bn 2, P = TBS	R = CF ₃	P = Br P = TE	n, ds ~ 6 3S, ds ~	65:35 (1,5 • 80:20 (1	5- <i>syn</i> :1,5 ,5- <i>syn</i> :1	5-anti) ,5-anti)
R = CCl ₃	3, P = Bn 4, P = TBS	R = CCl _a	P = Br P = TE	n, <i>ds</i> ~ 9 3S, <i>ds</i> ~	90:10 (1,5 • 80:20 (1	5-syn:1,5 ,5-syn:1	5-antí) 1,5-antí)

Scheme 1. 1,5-*syn* Stereoinduction in Aldol Reactions of

More recently, Yamamoto and co-workers have described that very useful levels of 1,5-*syn* selectivity could be obtained in lithium-mediated aldol reactions employing β -alkoxy methylketones with super silyl protecting groups at the β -oxygen.⁷

At this point, we decided to study the influence of bulky substituents at the β -position in aldol reactions of kinetic boron enolates generated from β -alkoxy methylketones. Methylketones with either *tert*-butyldimethylsilyl (TBS) or *p*-methoxybenzyl (PMB) protecting groups at the β -oxygen were initially employed to evaluate the potential steric and electronic impact of the β -alkoxy protecting group.

Our studies began with the preparation of the β -alkoxy- β -*tert*-butyl methylketones **6** (P = PMB) and **7** (P = TBS) starting with an aldol reaction between acetone and pivalaldehyde mediated by L-proline, providing **5** in 63% yield and 90% ee, as determined by Mosher ester analysis (Scheme 2).⁸ Treatment of methylketone **5** with 4-methoxybenzyl

2,2,2-trichloroacetimidate in the presence of catalytic amounts of TfOH gave methylketone **6** in 90% yield.⁹ Protection of the β -oxygen in **5** as its TBS ether was achieved by using TBSCl and imidazole in DMF at room temperature for 48 h providing **7** in 78% yield¹⁰ (Scheme 2).

The aldol reactions of methylketones 6 and 7 with aldehydes 8a-h were investigated using $(c-\text{Hex})_2BCl$ and

(8) (a) List, B. *Tetrahedron* **2002**, *58*, 5573. (b) List, B.; Pojarliev, P.; Castello, C. *Org. Lett.* **2001**, *3*, 573. (c) List, B.; Lerner, R. A.; Barbas, C. F., III *J. Am. Chem. Soc.* **2000**, *122*, 2395. See Supporting Information

Et₃N in Et₂O, providing the 1,5-*syn* and 1,5-*anti* aldol adducts (Scheme 3, Table 1). These boron-mediated aldol reactions

Table	1.	Aldol	Reactions	of	6	and	7	with	R'CHO	
-------	----	-------	-----------	----	---	-----	---	------	-------	--

		aldehyde	$\mathrm{d}\mathrm{r}^a$	yield
entry	Р	(R')	(1,5-syn:1,5-anti)	$(\%)^{b}$
1	TBS (7)	<i>i</i> -Pr, 8a	65:35	98
2^c	TBS (7)	<i>i</i> -Pr, 8a	65:35	79
3	PMB (6)	<i>i</i> -Pr, 8a	80:20	91
4	TBS (7)	Et, 8b	74:26	92
5	PMB (6)	Et, 8b	82:18	85
6	TBS (7)	<i>t</i> -Bu, 8c	66:34	98
7	PMB (6)	<i>t</i> -Bu, 8c	78:22	80
8	TBS (7)	$CH_2=C(Me), 8d$	72:28	86
9	PMB (6)	$CH_2=C(Me), 8d$	81:19	86
10	TBS (7)	Ph, 8e	68:32	71
11	PMB (6)	Ph, 8e	83:17	95
12	TBS (7)	p-NO ₂ C ₆ H ₄ , 8f	62:38	90
13	PMB (6)	p-NO ₂ C ₆ H ₄ , 8f	75:25	85
14	TBS (7)	p-MeOC ₆ H ₄ , 8g	68:32	86
15	PMB (6)	$p ext{-MeOC}_6 ext{H}_4$, 8g	79:21	86
16	TBS (7)	$\rm PhCH_2CH_2, 8h$	65:35	88

^{*a*} Ratio was determined by ¹H and ¹³C NMR analysis of the diastereoisomeric mixture of aldol adducts. ^{*b*} Isolated yields of both *syn* and *anti* isomers after SiO₂ gel *flash* column chromatography. ^{*c*} CH₂Cl₂ as solvent.

were found to proceed with good yields and good levels of remote 1,5-*syn* stereoinduction for methylketone **6** (P = PMB) providing 1,5-*syn* isomers **9a**–**g** as the major products. In the same way, the boron enolate reactions of methylketone **7** (P = TBS) with aldehydes **8a**–**h** resulted in a mixture of aldol adducts **11a**–**h** and **12a**–**h**, favoring the 1,5-*syn* aldol adducts **11a**–**h** (Scheme 3, Table 1).

Notably, these reactions provided the 1,5-syn isomer, opposite to 1,5-anti stereoinduction observed for boronmediated aldol reactions of simpler β -alkyl- β -alkoxy methylketones, indicating the overriding contribution, in this special case, from the bulky substituent at the β -position. More surprisingly, independent of the nature of the β -oxygen protecting group, the 1,5-syn isomer is always obtained as the major product. The stereoinduction observed in these reactions shows that the volume of the substituent in β -position is crucial for control of remote stereochemistry.

Thus, it is clear that the major contribution to the sense of 1,5-*syn* induction observed in aldol reactions involving boron enolates of methylketones 1-4 is due to the volume of the substituent at the β -position and not to electronic effects, as stated previously.⁵

⁽⁷⁾ Yamaoka, Y.; Yamamoto, H. J. Am. Chem. Soc. 2010, 132, 5354.

<sup>file for more details.
(9) Doi, T.; Numajiri, Y.; Munakata, A.; Takahashi, T. Org. Lett. 2006, 8, 531.</sup>

⁽¹⁰⁾ Zou, B.; Wei, J.; Cai, G.; Ma., D. Org. Lett. 2003, 5, 3503.

The relative stereochemistry for aldol adducts 11a-h and 12a-h (obtained from methylketone 7) was unambiguously established after removal of the TBS protecting group in 11c (major product, obtained after purification by SiO₂ gel *flash* column chromatography) with HF in acetonitrile,¹¹ affording the *meso* 1,5-diol 13, as required by a 1,5-*syn* relationship (Scheme 4). Removal of the TBS group in 12c (minor

isomer) generated the *C*₂-symmetric 1,5-diol **14**, $[\alpha]_D$ +50 (*c* = 0.45, CH₂Cl₂), as required by a 1,5-*anti* relationship. To assign the relative stereochemistry for aldol adducts obtained from methylketone **6** (P = PMB), we treated a 78: 22 mixture of adducts **9c** and **10c** (P = PMB) with DDQ providing a mixture of diols **13** and **14** in 78% yield, which had their ¹H and ¹³C NMR spectra compared with those of diols prepared in Scheme 4 from **11c** and **12c** (Scheme 5).

This proved that the 1,5-*syn* isomer is the major product with both TBS and PMB protecting groups.

At this point, we decided to investigate the impact of a bulky protecting group like β -trityl (OTr) at the β -oxygen. To accomplish this, we chose methylketones with different stereoelectronic properties at the β -substituents (R = Me, p-NO₂C₆H₄, and t-Bu). The preparation of the β -alkoxymethylketones **16** (R = p-NO₂C₆H₄) and **17** (R = t-Bu) began with known hydroxy methylketones **15** and **5**, respectively.^{5c,d} Protection of the β -oxygen in **15** and **5** was achieved by using TrCl, AgOTf, and 2,6-lutidine in CH₂Cl₂ at room temperature for 1 h, providing the corresponding

 β -OTr methylketones **16** and **17** (Scheme 6).¹² The methylketone **20** (R = Me) was obtained by monoprotection of diol **18** with TrCl, AgOTf, and 2,6-lutidine in CH₂Cl₂ providing alcohol **19** followed by Swern oxidation.

The aldol reaction between the boron enolates generated from methylketones **16**, **17**, and **20**, applying the conditions described in Table 1, was performed (Scheme 7, Table 2).

Surprisingly, entries 1 and 7 (Table 2) revealed that when the Tr protecting group is introduced in methylketone **17** (R = *t*-Bu) the 1,5-*syn* selectivity previously observed is lost. In the same way, methylketone **20** (R = Me) (entries 2, 5, and 8) led to a 50:50 ratio of diastereoisomers. These results show that the combination of β -alkyl groups with a β -OTr substituent gives rise to no selectivity, independent of the nature of this R group. However, the aldol reactions of methylketone **16** (R = *p*-NO₂C₆H₄) were found to proceed with good yields and low levels of remote 1,5-*anti* stereoinduction providing aldol adducts **22a,b,d-f** as the major products.

This is interesting because in our previous studies we found that high degrees of 1,5-*anti* stereoinduction were obtained in aldol reactions of β -aryl- β -p-methoxybenzyl

⁽¹¹⁾ Newton, R. F.; Reynolds, D. P.; Finch, M. A. W.; Kelly, D. R.; Roberts, S. M. *Tetrahedron Lett.* **1979**, *41*, 3981.

^{(12) (}a) Burk, R. M.; Gac, T. S.; Roof, M. B. *Tetrahedron Lett.* **1994**, *35*, 8111. (b) Lundquist, J. T., IV; Satterfield, A. D.; Pelletier, J. C. Org. Lett. **2006**, *8*, 3915.

Table 2. Aldol Reactions of 16, 17, and 20 with R'CHO

	R	aldehyde	dr^a	yield
entry	(MK)	(R')	(1,5-syn:1,5-anti)	$(\%)^{b}$
1	<i>t</i> -Bu (17)	<i>i</i> -Pr, 8a	50:50	71
2	Me (20)	<i>i</i> -Pr, 8a	50:50	95
3	$p-NO_{2}C_{6}H_{4}$ (16)	<i>i</i> -Pr, 8a	27:73	51
4	$p-NO_{2}C_{6}H_{4}$ (16)	Et, 8b	40:60	55
5	Me (20)	$CH_2 {=} C(Me), \textbf{8d}$	50:50	95
6	$p-NO_{2}C_{6}H_{4}$ (16)	$CH_2 {=} C(Me), \textbf{8d}$	30:70	98
7	<i>t</i> -Bu (17)	Ph, 8e	50:50	95
8	Me (20)	Ph, 8e	50:50	77
9	$p-NO_{2}C_{6}H_{4}$ (16)	Ph, 8e	33:67	76
10	$\textit{p-NO}_2C_6H_4~(\textbf{16})$	p-NO ₂ C ₆ H ₄ , 8f	30:70	76

^{*a*} Ratio was determined by ¹H and ¹³C NMR analysis of the diastereoisomeric mixture of aldol adducts. ^{*b*} Isolated yields of both *syn* and *anti* isomers after SiO₂ gel *flash* column chromatography.

methylketones.^{5c,d} After introducing TBS and *t*-Bu protecting groups, the aldol reactions proceeded with low levels of 1,5syn stereoinduction. In this context, methylketone **16** (R = p-NO₂C₆H₄) shows unexpected selectivities.

To assign the relative stereochemistry for aldol adducts obtained from methylketone **16** (R = p-NO₂C₆H₄, P = Tr), we treated a 27:73 misture of *syn* and *anti* aldol adducts **21a** and **22a** with HF in acetonitrile, giving a mixture of diols **27** and **28**, respectively (Scheme 8). After comparison of their ¹H and

¹³C NMR spectra with spectroscopic data previously reported,^{5c,d} we observed that the 1,5-*anti* isomer is the major product (see Supporting Information for full details).

Recently, Paton and Goodman proposed that the aldol reactions of boron enolates generated from β -alkoxy methylketones proceed via boat-like transition states involving a hydrogen bonding interaction.^{13,14} This intriguing formyl hydrogen bond stabilizes the transition state **IN-1,5-***ANTI*, leading to the 1,5-*anti* isomer, and shows steric interactions between the β -alkyl R group and the boron ligands in the boat-like transition state **IN-1,5***-syn* isomer (Figure 1).

Figure 1. Relative energies for boat-like transition structures obtained using B3LYP/6-31G(d,p). Single-point energy (CPCM-auks) in B3LYP/6-31+G(d,p).

On the basis of the results described here, the 1,5-syn selectivities observed in aldol reactions of β -bulky boron enolates cannot be explained via Goodman's proposed IN-1,5-SYN transition state. We have performed theoretical calculations using density functional theory (B3LYP) on the competing transition structures leading to both 1,5-anti and 1,5-syn aldol adducts. We studied the simple aldol transition structures for the dimethylboron enolates and acetaldehyde. For $R = CCl_3$ and *t*-Bu, the competitive boat-like transition states containing stabilizing hydrogen bonds are higher in energy when compared with the corresponding OUT-1,5-ANTI and OUT-1,5-SYN transition states, lacking the formyl H-bond. The analysis of the relative energies of these transition states shows relative energies favoring the corresponding **OUT-1,5-**SYN transition structure, thus preventing the steric interactions of bulky R groups and supporting the formation of the 1,5-syn diastereoisomer. The results presented in Figure 1 are in agreement with our experimental results. Further details about the theoretical studies will be described in a full account of this work.

Acknowledgment. We are grateful to FAEP-UNICAMP, FAPESP, CNPq, and INCT-INOFAR (Proc. CNPq 573.564/2008-6) for financial support and to Prof. Carol H. Collins (IQ-UNICAMP) for helpful suggestions about English grammar and style.

Supporting Information Available: Experimental procedures and spectral data for the prepared compounds as well as Cartesian coordinates of transition structures with gasphase and solution-phase SCF absolute energies. This material is available free of charge via the Internet at http://pubs.acs.org.

OL102303P

^{(13) (}a) Paton, R. S.; Goodman, J. M. Org. Lett. **2006**, 8, 4299. (b) Goodman, J. M.; Paton, R. S. Chem. Commun. **2007**, 2124. (c) Paton, R. S.; Goodman, J. M. J. Org. Chem. **2008**, 73, 1253.

⁽¹⁴⁾ The theoretical calculations were performed with the corresponding S enantiomer of the β -alkoxy methylketone. For similar theoretical calculations performed in our group, see ref 5e.